
 BÖRCSÖK, PÁSZTORY 

1 

Börcsök Z.
1*

 – Pásztory Z.
1
 

1 University of Sopron, 4 Bajcsy-Zsilinszky E str., 9400, Sopron, Hungary 

THE ROLE OF LIGNIN PLASTICIZATION IN SOME WOODWORKING 
PROCESSES 

 

ABSTRACT 

Wood is a mixture of polymers, composed of cellulose microfibrils and amorphous 

hemicellulose and lignin molecules. The lignin phenyl propane units create chains, which are 

crosslinked in an amorphous, highly branched three-dimensional structure, linked to the cellulose 

fibrils through the hemicelluloses. The components of the wood can behave similarly to the 

artificial polymers: the state of it can be glassy, elastic and melted. 

The moist lignin softens at about 100°C and allows the molecules to move in the cell walls. 

The moist hemicellulose and amorphous cellulose are in elastic state in these conditions, so 

during the described industrial processes, when the wood softens, the lignin plays the main role, 

but of course other physical and chemical reactions take place too. All of these reactions 

contribute to the end result of the process, but this review did not aim to map these reactions in 

detail, but rather to provide a summary of the industrial processes where lignin softening may 

play a role. These processes are pellet manufacturing, binderless panel manufacturing, wood 

welding, wood bonding, wood surface compacting, and veneer manufacturing by peeling. 
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INTRODUCTION  

Wood composed of partially crystalline cellulose microfibrils, hemicellulose and amorphous 

lignin molecules. Lignin is built up from phenyl propane units, the chains of it are crosslinked in 

a three-dimensional structure. Lignin linked to the cellulose fibrils through the hemicelluloses 

(Rowell et al. 2005). The amount of lignin varies between species, tissues, cell types, and cell 

wall layers. The greatest concentrations of lignin were found in the compound middle lamella 

and the cell corners; lower concentrations were found in the secondary cell walls (Fergus et al. 

1969; Westermark et al. 1988; Fromm et al. 2003; Gierlinger and Schwanninger 2006). Although 

the lignin concentration in the middle lamella and in the cell corners is high, the volume of the 

secondary cell wall layers is much higher, so most of the lignin was located in the secondary 

walls (Fergus and Goring 1970a, 1970b; Adler 1977, Saka and Goring 1985). The lignin 

concentration of the vessel wall is higher than that of the fiber, while ray parenchyma cells have 

a lower lignin concentration than that of the fibers (Saka and Goring 1985). 

The state of a polymer can be glassy, elastic and melted. In the glassy state, the parts of the 

polymer macromolecule can only oscillate. If the temperature is increasing, the internal energy of 

the molecule is increasing too and the parts and segments of the molecules can move, but the 

relative position of the center of mass of the molecular does not change. This is the flexible state, 

where the polymer has a high degree of reversible deformation. The further internal energy 
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growth melt the polimers, where the molecules move relative to one another and the polymers 

flow (Miskolczi 2012). Many amorphous polymers change from a glassy state to a rubbery, 

elastic state above a certain temperature, called the glass transition temperature (Tg), as they 

plasticize (Hatakeyama and Hatakeyama 2010; Miskolczi 2012).  

The temperature required for lignin to transition to glass (Tg) is influenced by a number of 

factors, such as the presence of rigid phenolic side groups on the main chain, the presence of 

crosslinking, the number of bonds between chains, hydrogen bonds, its molecular weight, species, 

lignin conformation, and thermal pre-history, etc. (Chow and Pickles 1971; Gellerstedt 2015; 

Furuta et al. 2008; 2010; Hatakeyama and Hatakeyama 2010). When dry, the differences in the 

glass transition temperature of cellulose, hemicellulose and lignin is not big: 200 to 250°C for 

the amorphous region of cellulose, 150 to 220°C for hemicelluloses, and around 205°C for lignin 

(Goring 1963; Back and Salmén 1982). Many researchers have found that water molecules can 

break hydrogen bonds inside and between large molecules and segmental motion can occur 

easily, so the Tg of lignin decreases with increasing moisture content until the wood or the lignin 

reaches its water saturated point (Goring 1963; Back and Salmén 1982, Morsing and Hoffmeyer 

1998; Hatakeyama and Hatakeyama 1998, 2010).  

Other wood constituents in a native wood cannot be separated from lignin. The softening 

temperature of native hemicellulose under dry conditions is around 180°C (Back and Salmén 

1982; Olsson and Salmén 2003). Water works like plasticizer and decreases the glass transition 

temperature of the hemicelluloses too: at 20% water content it is around 50°C, at 30% it is 

around room temperature (Back and Salmén 1982; Olsson and Salmén 2003; Navi and Sandberg 

2012). The amorphous regions of cellulose behave similarly.  

This type of wood softening – mainly the lignin – is used in several industrial processes, 

namely: pellet manufacturing, binderless panel manufacturing, wood welding, wood bonding, 

wood surface compacting, and veneer manufacturing by peeling. Of course, during these 

industrial processes, in addition to softening of other components, other physical and chemical 

reactions take place, all of which contribute to the end result of the process. We did not aim to 

map these reactions in detail, but rather to provide a summary of the industrial processes where 

lignin softening may play a role. 

 

WOOD WELDING 

Frictional wood welding is a relatively new technology for creating wood joints but this 

technique is widely used in the plastics industry (Ganne-Chédeville et al. 2006). The welding 

processes can be classified as linear, orbital and rotational friction welding (Ruponen et al. 2015). 

During the welding process, no need to add other material to the system, the welded pieces of 

wood are friction together to provide the necessary energy. After a few seconds (3-10 s) of 

friction, at a temperature of about 320-350°C, the wood surfaces start to decompose at the 

increased temperature. The wood next to the rubbed surfaces starts to soften, forming a viscous 

film. After reaching the maximum temperature about 420-450°C the frictional movement is 

terminated, but the joined parts are held together. The final cooling down leads to solidification 

of the interfacial film forming the connection between the wood parts (Stamm et al. 2005b).  

The mechanism of welding is, in addition to the chemical reactions that take place, due to 

the temperature-induced softening, flowing and solidification of the intercellular material, mainly 

amorphous polymers: lignin and hemicelluloses (Stamm et al. 2005a). This flow of material 

induces high densification of the bonded interface (Ganne-Chédeville et al. 2006; Pizzi 2017). 

The physical entanglement of the fibers interconnected as a result of friction can improve the 
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connection. In the brief pressure-holding phase immediately after welding, chemical reactions 

occur. The main reactions are the formation and self-condensation of furfural and the cross-

linking reaction of lignin with carbohydrate-derived furfural (Pizzi 2017). 

The chemical changes during the friction welding similar to fast pyrolysis at lower pyrolysis 

temperature: bonds broke, free radicals are formed, which are then participate in 

re‑polymerization and side‑chain conversions (Kawamoto 2017). In these temperature ranges, 

only the amorphous components of wood are affected, lignin, hemicelluloses, and the amorphous 

cellulose. The amount of typical bonds of phenilpropane units decreases, while furfural and furan 

derivatives from hemicelluloses react with the lignin (Belleville et al. 2013; Sun et al. 2010).  

The welded bondline is a mass of entangled long wood cells immersed in a matrix of 

amorphous, fused intercellular material, mostly lignin but also including some hemicelluloses. 

The bonding line can separate to melting zone, were the wood polymers are melted, decomposed 

and partly charred; to fully plasticized and deformed zone, where the polymers are plasticized 

and the cells are deformed, and a partial deformed region, where the cells are distinguished, but 

some of them deformed (Ganne-Chédeville et al. 2006).  

The quality of a friction welding joint correlates with several welding parameters, such as 

welding pressure, frequency, time, holding pressure and time, amplitude or displacement, wood 

species, orientation of the grains, EMC, and specimen dimensions, chemical composition etc. 

(Kanazawa et al. 2005; Ganne-Chédeville et al. 2006, 2008; Belleville et al. 2018).  

 

PELLET MANUFACTURING 

Ligno-cellulosic materials can be densified by pelletizing, briquette or cube making. During 

this process, the particles are forced together by applying mechanical force and inter-particle 

bonding is created (Tumuluru et al. 2010; Kaliyan and Morey 2010). The name ‘pellet’ is usually 

used for product less than 15 mm in diameter, while ‘briquette’ is generally a larger densified 

material unit. Several studies examined the compression different raw materials such as wood, 

wood waste and bark, forest residues, straws, grasses (wheat, barley, corn etc.), olive cake 

(waste), palm fiber and shell. Since pellet production has been studied most frequently and in 

most detail, this is described in the next sections, although most statements are true for other 

densifying procedures (Tumuluru et al. 2010). 

During the process, the size of the raw material is reduced by milling or grinding, and 

conditioned to an appropriate moisture content either by drying or moisturizing. In most cases 

the particles of raw material are forced through a channel. In a pellet mill the pressure is 100–

150-200 MPa (Kaliyan and Morey 2009). The pelletizing process generates heat that maintains 

the temperature of the operating die at 110-130°C (Nielsen et al. 2009). During pelleting, the raw 

material with 8-15% moisture content the lignin softens around 110-135°C (Kuokkanen et al. 

2011; Kaliyan and Morey 2009). As the pellets cool, lignin hards again and the pellet strength 

increases.  

Macroscopically two binding mechanisms can be distinguished: solid bridges between 

particles (Stelte et al. 2011a; Serrano et al. 2011) and other bonding with , hydrogen bridges, van 

der Waals’ forces, electrostatic, and magnetic forces (Kaliyan and Morey 2010). Due to the 

application of high pressures and temperatures, solid bridges can develop by diffusion of 

molecules from one particle to another at the points of contact and are formed by a chemical 

reaction, hardening of the binders, and solidification of the melted components (Kaliyan and 

Morey 2010). Pressure, heat above glass transition temperature, and a solvent such as water are 

used to promote adhesion by increasing the molecular contact.  
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Several factors were found to influence the process and the result of the densification 

experiments (Kaliyan and Morey 2009). The increasing temperature and MC decreased the 

energy requirements for pellet manufacturing (Nielsen et al. 2009). The increasing temperature 

of die increases the pellet density, decreases the dimensional expansion, and increases the tensile 

strength of the pellets. (Kaliyan and Morey 2006). Decreasing the particle size increases the 

pellet density, decreases their expansion, and increases the tensile strength of the pellets 

(Lehtikangas 2001). 

The biochemical characteristics of the raw material are also very important, higher lignin 

and extract content has a positive effect on the durability (Bradfield and Levi 1984; Lehtikangas 

2001; Stelte et al. 2011a; Serrano et al. 2011).  

Pretreatment of the raw material generally increases the pellet density and durability by 

activating lignin (Shaw 2008; Zandersons et al. 2004).  

 

WOOD SURFACE DENSIFICATION 

The process of densifying wood by compression requires four steps (Kutnar and Šernek 

2007; Rautkari et al. 2011): 1. plasticization of the cell wall, 2. compression perpendicular to the 

grain in the softened state, 3. cooling and drying in the deformed state, and 4. fixation of the 

deformed state to eliminate the shape memory effect. The density is increasing, the color of the 

wood become darker and the EMC is reduced (Arruda et al. (2015). 

In the first the cell wall should soften. The temperature should be at least 25°C higher than 

Tg of lignin, between 80-140°C, the moisture content is near the saturation point. Under these 

conditions, lignin, hemicelluloses and the semi-crystalline cellulose are relatively mobile and can 

be deformed easily. (Kutnar and Šernek 2007; Kutnar et al. 2009; Rautkari et al. 2011). 

Pressing changes the wood morphology, is buckling the cell walls and reducing the volume 

of void spaces, but a non-uniform density profile is created as the surface becomes denser 

(Kutnar et al. 2009). 

When compressed wood meets with water, it approximates its original dimensions. This 

effect occurs because internal stresses are introduced into the cell walls during compression, 

which can be completely eliminated by heat and/or steam treatment (Morsing and Hoffmeyer 

1998; Wolcott and Shutler 2003, Kutnar et al. 2009). 

 

BINDERLESS BOARDS MANUFACTURING 

Due to its environmentally friendly properties, many researchers tried to produce fiber or 

particle boards without adhesive or using bio-based adhesives such as sugars or lignin. 

Binderless fibreboards have been produced for decades and several types of raw material were 

used: bark, rice and wheat straw, kenaf, banana stems, coconut husks, bagasse, oil, soybean straw 

and bamboo etc.  

Several parameters influence the physical and mechanical properties of the panels: chemical 

composition (Widyorini et al. 2005; Lui et al. 2018), particle size and geometry (Widyorini et al. 

2011; Kurokochi and Sato 2015a; 2015b; Lui et al. 2018; Ahmad et al. 2019), pressing 

temperature (Boon et al. 2013; Milawarni et al. 2019; Song et al. 2020), pressing time (Boon et 

al. 2013), pressure (Boon et al. 2013); water content (Widyorini et al. 2005), pretreatment (Xu et 

al. 2006) etc. Trichomes and wart-like protuberances on the epidermis of herbaceous straw might 

inhibit the bonding between particles. Wax-like substances on the epidermis of rice straw might 
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contribute to the water resistance of the board but inhibited the adhesion of the particles 

(Kurokochi and Sato 2015a; 2015b). 

The chemical composition of the different biomasses is similar to wood, the main 

components are the same: cellulose, lignin, hemicelluloses. The bonds between the bio particles 

are based on chemical and physical interactions during the hot pressing between various 

components of the particles (Hubbe et al. 2018). In fiberboard production, during 

thermomechanical pulping, woodchips are converted to lignin-covered fibers by shearing wood 

fibers along the lignin-rich middle lamellae. Halvarsson et al. (2009), Wang et al. (2017) and 

Laine et al. (2019) suggested that lignin has an important role in binderless board production due 

to the softening of lignin at elevated temperatures and under pressure, fibers with lignin-rich 

surfaces fuse together as the softened lignin molecules flow from one fiber surface to another 

one, and possibly form covalent bonds too, the role of the softened lignin can’t be separated from 

the chemical changes.  

During hot pressing several chemical reactions have been observed: hydrolysis of the 

hemicelluloses occurs (Xu et al. 2006; Zhang et al. 2015), mainly furfural is formed. Linakges 

between the lignin and furfural monomers are formed or self-polymerization occurs during the 

pressing, which provided the main self-bonding strength of binderless fiberboards (Zhang et al. 

2015). 

The surfaces of the particles and fibers can be activated by different pretreatments, the 

amount of the chemical bonds can be increased. Fenton’s reagent contains ferrous chloride and 

hydrogen peroxide, hydroxyl radicals are generated by decomposition of hydrogen peroxide with 

the assistance of ferrous ions. In the end reactive components formed in lignin, the properties of 

the boards is improved (Halvarsson et al. 2009; Zang et al. 2015). Enzymatic systems also can 

activate lignin on fiber surfaces by generating free radicals (Pereira et al. 2005; Nyanhongo et al. 

2010). Steam explosion also can improve the panel properties (Anglès et al. 1999; 2001; Gao et 

al. 2011). 

 

SOLID WOOD BENDING 

Wood bending is one of the oldest wood processing techniques. Long experience has 

evolved from the practice of bending techniques and skilled craftsmen can apply them. 

Plasticizing treatments can soften wood sufficiently to enable it to make a curve (Peck 1957). 

The plasticity of wood can be increased by increasing the moisture and/or temperature of the 

wood. Hot water and steam are commonly used treatments to prepare wood for bending. Some 

chemicals can also soften wood. The glass transition temperature (Tg) of the lignin in moist wood 

is 80-100°C. Above Tg the lignin undergoes thermoplastic flow and resets in the modified 

configuration when cooling. This is the principle behind bending of wood (Nakajima et al. 2009; 

Ibach 2010). Heat and moisture make certain species of wood sufficiently plastic for bending 

operations. In general, hardwoods are more readily softened than softwoods, and certain 

hardwoods more so than others (Peck 1957). 

The temperature of saturated steam at atmospheric pressure, about 100°C or boiling or 

nearly boiling water, is generally sufficient to plastify wood for bending. When chemicals are 

used for plasticization, the connections between the matrix (lignin) and cellulose and the ties 

between the cell walls loosen. The chemical plasticization commonly uses water solutions of 

ammonia, urea, dicyandiamide, ethylenediamine, and ammonia (Angelski 2014). The high-

frequency microwave heating of wood is also used for plasticization (Ibach 2010; Gašparík and 

Gaff 2013).  
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VENEER MANUFACTURING 

Several factors have effect on veneer manufacturing and veneer quality (Olufemi 2012). 

Successful veneer production requires wood softening. The heating of green wood prior to 

peeling has traditionally been accomplished by immersing the whole logs in hot water basins or 

by steaming them in vats.  

During soaking or steaming the wood softens, and the deformability of wood is increasing 

(Baldwin 1975, Bardet et al. 2003, Yamauchi et al. 2005). Under optimal conditions, shallower 

lathe checks formed (Rohumaa et al. 2016a, 2016b, 2016c). For this purpose, the temperature 

should exceed the glass transition temperature Tg, of lignin at the MC of green wood across the 

log. This softening reduces the required energy (Dupleix et al. 2012; 2013; Xu et al. 2017), 

because the shear strength of the wood decreases and less pressure needed on the knife during 

peeling. This reduces the power consumption and reduces wear of the tools and the quality of the 

veneer is improved as influencing the formation of lathe checks and other surface quality 

(Dupleix et al. 2012; Olufemi 2012; Rohumaa et al. 2016a, 2016b, 2016c). 

 

SUMMARY 

Lignin softening plays a role in several woodworking processes, which are basically divided 

into two groups. The first group includes processes where lignin softens or possibly liquefies, 

and the soft lignin penetrates into the adjacent particles and cell walls, and acts as an adhesive. 

This includes wood welding, the manufacture of binderless boards or manufacturing pellets. The 

other group consists of processes where the wood has to undergo some deformation and 

therefore the cell walls and the materials that compose the cell wall must move relative to one 

another. This group includes veneer manufacturing, solid wood bending and surface densification. 

We hope that a better understanding of these processes can help improve the manufacturing 

processes. 
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