Romenda R. - Szalai P. - Faitli J.

Miskolci Egyetem, Nyersanyagelőkészítési és Környezeti Eljárástechnikai Intézet Kapcsolat: ejtrom@uni-miskolc.hu

SZABÁLYOS ALAKÚ SZEMCSÉK KÖZEGELLENÁLLÁSÁNAK VIZSGÁLATA EGYEDI FEJLESZTÉSŰ LÉGCSATORNÁBAN

ABSZTRAKT

A hulladékgazdálkodásban alkalmazott légáramkészülékek fejlesztése érdekében szemcsemozgási alapvizsgálatokat végeztünk, mely során szabályos alakú szemcséket vizsgáltunk egy egyedi fejlesztésű légcsatornában. A légcsatornában létrehozott rendezett áramlásba helyezett szemcsékre ható közegellenálló erőt mértük egy erőmérő cellával. A vizsgálatoknak kettős célja volt. Az egyik, hogy a már ismert szemcseformák tulajdonságaival a légcsatornát hitelesítsük, és ellenőrizzük a berendezés használhatóságát. A másik, hogy az egyszerűbb szemcseformák vizsgálata során olyan összefüggéseket állapítsunk meg, amelyek később a légáramkészülékek fejlesztésében, tervezésében felhasználhatók.

Kulcsszavak: légáramkészülék, szeparálás, szemcsemozgás, hulladékhasznosítás.

BEVEZETÉS ÉS CÉLKITŰZÉS

Az EU körforgásos gazdaság stratégiája korszerű hulladékgazdálkodást kíván. A termelésből és a fogyasztásból kikerülő hulladék és maradvány anyagokat a hulladékelőkészítéstechnika segítségével lehet újra a gazdasági körforgásba vezetni. A légáramkészülékeket gyakran alkalmazzák kommunális hulladékok és más hulladékáramok feldolgozása során az anyag nemesítésére, a nagy fűtőértékű könnyű anyagok leválasztására. Ezen kívül a szemcsemozgás jelensége más berendezések működésére is hatással van, mint például az alak szerinti szétválasztó berendezésekre, ballisztikus vagy más 2D-3D szeparátorokra, illetve a szenzorokra alapozott válogató berendezések esetében a szemcsék kifújására. Számos tanulmány foglalkozik szemcsemozgási kísérletekkel, azonban a szemcsealak hatását még nem tudjuk elméleti úton számítani. A szakirodalomban (Romenda és Burinda, 2019) az un. egyentérfogatú gömb számított süllyedési végsebességére vonatkoztatott alaktényező használata terjedt el, amelyet kísérletekkel kell meghatározni (1. egyenlet).

$$SF = \frac{V_0}{V_{0V}} = \sqrt{\frac{C_{dV}}{C_d}}$$
 $0 < SF < 1$ (1.)

Méréssel kell meghatározni a valódi szemcse süllyedési végsebességét (v_o), majd kiszámítani az egyentérfogatú gömb átmérőjét és annak a süllyedési végsebességét (v_{oV}). Az alaktényező a közegellenállási tényezők hányadosának a négyzetgyökeként is kiszámítható. Az alak vizsgálata a hulladékgazdálkodásban alapvető fontosságú, mert a valódi hulladékszemcsék jellemzően nem gömb alakúak. A korábbiakban számos szemcsemozgási vizsgálatot végeztünk el, amelyek mindegyike esetében a szemcsék mozogtak az álló vagy mozgó közegben. Ezt most megfordítottuk és a szemcsét egy erőmérő cellához rögzítettük és légáramba helyeztük, így közvetlenül a közegellenálló erőt mérhetjük meg.

[©] Romenda R. – Szalai P. – Faitli J.

A szemcsemozgás alapjelensége az, amikor egy darab gömb alakú szemcse falhatással nem zavart közegben, gravitációs erőtérben, Newtoni közegben süllyed. Ez jól ismert a szakirodalomban. Ekkor a szemcse körüláramlása lehet lamináris illetve turbulens ezért körüláramlási tartományokat kell megkülönböztetni, amelyet az 1. ábra szemléltet (Faitli, 2015).

1. ábra: Newtoni közegben süllyedő, gömb alakú szemcse ellenállás tényező diagramja (Faitli, 2015)

A folyadékban vagy gázban elmozduló testekre a közeg erőt fejt ki. Az un. közegellenálló erő egyrészt a test körül áramló közeg viszkozitása miatt fellépő fal menti súrlódásból, másrészt a nyomáseloszlásból, - mivel a test előtt torló pont, nagy nyomás, mögötte leválások, kis nyomás alakul ki – származik. Stokes megoldotta a mozgásegyenletet, a kontinuitási egyenletet és a Newtoni közegek anyagegyenletét egy gömb alakú szemcsére és bevezette az un. közegellenállási tényezőt és a 2. egyenletre jutott (Pokorádi, 2002; Tarján, 1997).

$$F = \frac{1}{2} \cdot C_d \cdot A \cdot \rho_f \cdot v^2 \tag{2.}$$

A 2. egyenletben C_d a közegellenállási tényező, A a test és közeg relatív mozgásakor az áramlásra merőleges keresztmetszet, ρ_f a közeg sűrűsége és v a test és a közeg relatív sebessége. Gravitációs erőtérben történő stacionárius szemcsemozgás esetén a szemcse időben állandó süllyedési sebessége az úgynevezett süllyedési végsebesség a 3. egyenlettel számítható.

$$\nu_0 = \sqrt{\frac{4 \cdot g \cdot x}{3 \cdot C_d} \cdot \frac{\rho_s - \rho_f}{\rho_f}}$$
(3.)

A 3. egyenletben g a gravitációs gyorsulás, x a szemcseméret és ρ_s a test sűrűsége. A 3. egyenlet segítségével számítható az egyentérfogatú gömb süllyedési végsebessége az 1. ábrán közölt módszertan szerint.

[©] Romenda R. – Szalai P. – Faitli J.

Tarján (1997) szerint a kocka alakú testeknek az 1. egyenlet szerint definiált alaktényezője a IV. Stokes körüláramlási tartományon 0,92; míg a II. Newton turbulens tartományon pedig 0,56.

ANYAGOK ÉS MÓDSZEREK

A Miskolci Egyetem, Nyersanyagelőkészítési és Környezeti Eljárástechnikai Intézetében egy egyedileg tervezett légcsatornát építettünk, amelynek a vázlati rajza az 1. ábrán látható.

2. ábra: A kísérleti légcsatorna sematikus rajza

A kísérletekhez a légáramot egy forgólapátos radiális kiömlésű ventilátor (1) biztosítja, amelynek a kivezetésére egy 300 mm belső átmérőjű PVC cső (2) van helyezve. A nem átlátszó falú PVC cső egy 1 méteres és egy 2 méteres csőszakaszból áll. A 3 méteres csőszakasz két 90 fokos könyökkel visszafordul, amit újabb 1 méter PVC cső, és végül a 2 méter hosszú átlátszó falú, plexiből készült mérőcső (3) követ, melynek belső átmérője 295 mm. A ventilátort hajtó kalickás aszinkronmotorhoz egy frekvenciaváltó csatlakozott, amivel a ventilátor tengely-fordulatszámát tudtuk beállítani, ezzel változtatva az áramló levegő sebességét. A visszafordító PVC könyök után található egy áramlásrendező lemez (4). Ez nem más, mint a csőkeresztmetszet közepébe helyezett fél csőátmérőjű acéllemez, amelyet négy darab csavarral lehet központosítani. Ez egy jól ismert méréstechnikai megoldás olyan esetekre, amikor nem biztosítható az ún. 10D szabály, azaz a mérési pont előtt nem alakítható ki a csőátmérő nagyságához mért 10-szeres hosszúságú egyenes csőszakasz. A légtechnika kalibrálását három kijelölt keresztmetszetben végeztük el. A három kijelölt keresztmetszetet az 1. ábrán szaggatott vonalak jelölik a B-B mérési keresztmetszet felett. Ezeket a mérési keresztmetszet feletti magasságukkal jelöljük (35, 65 és 95 cm). A légsebességet egy-egy kiragadott pontban a megadott három keresztmetszetben Prandtl csővel (5) mértük meg. Az B-B mérési kereszt-

[©] Romenda R. – Szalai P. – Faitli J.

metszetben egy tengelyre (6) erőkart rögzítettünk. Az erőkar belső végén egy kampó található (9), amelyre a vizsgált szemcséket akasztottuk. Az erőkar és a kampó "üres-járási", szemcsék nélküli közegálló erejét előre megmértük minden vizsgált légáram esetében, amelyet a kiértékelés során korrigáltunk. Az erőkar másik vége egy nyúlásmérő bélyeggel felszerelt Stauer CK 500-0P4 precíziós erőmérő cellához (7) volt rögzítve. Az erőkar állítható volt, így az 500 g névleges méréstartományú cellát 0-800 g méréstartományon tudtuk alkalmazni. Az erőmérő cellát egy National Instruments egyenfeszültségű mérőerősítőhöz (Wheatstone híd) és AD kártyához csatlakoztattuk. A mérésadatgyűjtő programot LabWindows CVI C++ nyel-ven írtuk meg. A 3. ábrán az elkészült kísérleti berendezés látható.

3. ábra: A kísérleti légcsatorna fényképe

A kísérleteket három különböző méretű kockával végeztük el, három különböző orientációban. A kockák paramétereit az 1. táblázat foglalja össze.

tuotusut. 21 Filoguti tosien tuttut						
	oldalhossz a [cm]	tömeg m [g]	felszín A [cm ²]	térfogat V [cm ³]	egyentérfogatú gömb átmérő x _v [mm]	sűrűség ρ [g/cm³]
Kiskocka	4,14	14,45	102,84	70,96	5,14	0,2036
Közepes kocka	7,25	88,75	315,38	381,08	9,00	0,2329
Nagykocka	11,06	211,83	733,94	1352,90	13,72	0,1566

1. táblázat: A vizsgált testek adatai

4. ábra: Légsebességgel szemben lapjával, élével és csúcsával mért kockák

A közegellenállási tényező kiszámolásához szükség van a testek légárammal szembeni vetületére. Amikor az orientációt úgy választjuk meg, hogy a test a lapjának közepén van felfüggesztve, akkor ez a felület egyenlő a lapnak a felületével. Ha a felfüggesztési pont az élének a közepén van, akkor egy téglalap ez a felület, melynek egyik oldala a kocka oldala, a másik oldala pedig alapátló. A csúcsban való felfüggesztés esetén a vetület már bonyolultabb. Egy csúcsára állított kockát megfigyelve az áramlás irányából látszik, hogy a lapátlók egy merőleges síkot határoznak meg, s ezek egy egyenlő oldalú háromszöget zárnak be. Ennek a háromszög területének a kétszerese a légárammal szembeni felület. A vetületi keresztmetszetek nagyságát a 2. táblázat foglalja össze.

	8.		j j 00 -
	Lapban [cm ²]	Élben [cm ²]	Csúcsban [cm ²]
Kiskocka	17,14	52,56	122,32
Közepes kocka	24,24	74,33	172,99
Nagykocka	29,69	91,04	211,87

2. táblázat: A különböző méretű kockák vetületi nagysága [cm²] adott orientációban felfüggesztve

EREDMÉNYEK

A részletes mérési eredményeket terjedelmi okokból nem közöljük. A kísérleteket a légtechnikai rendszer kalibrálásával kezdtük el. Elsőként számos ventilátor fordulatszám esetén a mérőcső három kiragadott keresztmetszetének 8-8 pontjában megmértük a légsebességet egy Prandtl cső segítségével. Megállapítottuk, hogy a 2. ábrán 4-essel jelölt áramlásrendező jól működött, mert a sebességeloszlás minden keresztmetszetben és vizsgált sebességnél 0,04 %nál kisebb eltérést mutatott. Ezt követően minden kocka esetében a súlyerő – mínusz felhajtó erő nagyságát megmértük álló levegőben. Ezt követően a különféle légsebességek esetében az erőmérő által mért erőből levontuk az adott kocka "üresjárási – súly mínusz felhajtó" erejét, így megkaptuk a mért közegellenálló erőt. A közegellenálló erő nagyságából és az áramlásra merőleges legnagyobb felületekből a 2. egyenlet segítségével kiszámítható a közegellenállási tényező. A mérési eredményeket a 3-5. táblázatok foglalják össze. A 3-5. táblázatokban Rev az egyentérfogatú gömbátmérőkre számított Reynolds szám.

Frekvencia	Légsebesség	Reynolds szám	Közegellenállási tényező [-]		
[Hz]	[m/s]	Re _V [-]	lapban	élben	csúcsban
5	2,43	8 361,5	2,4131	1,7063	1,5788
7,5	3,63	12 490,6	1,5860	1,3254	1,3734
10	4,82	16 585,4	0,9813	0,8095	0,8734
12,5	6,01	20 680,1	0,9279	0,8659	1,0081
15	7,19	24 740,4	0,9294	0,8725	0,8569
17,5	8,36	28 766,3	0,9289	0,8726	0,8379
20	9,52	32 757,8	0,9170	0,8643	0,8359
25	11,83	40 706,4	0,8934	0,8799	0,8203
30	14,1	48 517,3	0,8664	0,8897	0,7993
40	18,56	63 863,9	0,8386	0,8366	0,7817
50	22,91	78 832,0	0,8460	0,8382	0,7828

3. táblázat: Kiskocka közegellenállás tényezői a három orientációban

4. táblázat: Közepes kocka közegellenállás tényezői a három orientációban

Frekvencia	Légsebesség	Reynolds szám	Közegellenállási tényező [-]		
[Hz]	[m/s]	Re _V [-]	lapban	élben	csúcsban
5	2,43	14 640,8	1,6788	0,8903	0,6663
7,5	3,63	21 870,8	1,2930	0,9143	0,8958
10	4,82	29 040,5	1,0401	0,8392	0,8237
12,5	6,01	36 210,3	0,9609	0,8779	0,8659
15	7,19	43 319,8	0,9398	0,9078	0,8922
17,5	8,36	50 369,0	0,9887	0,9347	0,9117
20	9,52	57 358,0	0,9411	0,9485	0,9269
25	11,83	71 275,8	0,9033	0,9518	0,9309
30	14,10	84 952,5	0,9221	0,9548	0,9330
40	18,56	111 824,0	0,9314	0,9596	0,9467
50	22,91	138 032,8	0,9466	0,9711	0,9553

5. táblázat: Nagykocka közegellenállás tényezői a három orientációban

Frekvencia	Légsebesség	Reynolds szám	Közegellenállási tényező [-]		ző [-]
[Hz]	[m/s]	Re _V [-]	lapban	élben	csúcsban
5	2,43	22319,0	1,0370	1,1477	1,5097
7,5	3,63	33340,7	1,1112	1,2429	1,5689
10	4,82	44270,6	1,1287	1,3369	1,5646
12,5	6,01	55200,5	1,1874	1,3884	1,6105
15	7,19	66038,6	1,2650	1,4166	1,6263
17,5	8,36	76784,7	1,2590	1,4182	1,6434
20	9,52	87439,1	1,2448	1,4267	1,6695
25	11,83	108655,9	1,2690	1,4436	1,6929
30	14,10	129505,4	1,2642	1,4384	1,7067
40	18,56	170469,5	1,2981	1,4553	1,7276
50	22,91	210423,3	1,3181	1,4432	1,7065

A korábbiakban megadott összefüggés (1.) segítségével a vizsgált kockák különböző orientációban mért, - az egyentérfogatú gömb számított süllyedési végsebességére vonatkoztatott – alaktényezőit a 6. táblázat tartalmazza.

Kocka	Orientáció	Alaktényező	
	Lapban	0,7	
Kis kocka	Élben	0,71	
	Csúcsban	0,72	
	Lapban	0,71	
Közepes kocka	Élben	0,71	
	Csúcsban	0,71	
	Lapban	0,51	
Nagy kocka	Élben	0,55	
	Csúcsban	0,59	

6. táblázat. A vizsgált próbatestek alaktényezői

A kísérleti berendezésben a légsebességet 2,4 és 23 m/s érték között lehetett változtatni. Ezzel szemben a vizsgált kockák egyentérfogatú gömbjeinek a számított süllyedési végsebesség értékei: kis kocka – 15,93 m/s, közepes kocka – 22,55 m/s és a nagy kocka 48,11 m/s. Látható, hogy a kis és közepes kockák esetében a berendezésben előállhat az az eset, amikor a nyugalomban lévő szemcse körül a légáram pont akkora közegellenálló erőt fejt ki, mint a súlyerő mínusz a felhajtó erő, azaz előáll az egyensúlyi (süllyedési végsebesség) állapot. Ezzel szemben a nagy kocka esetében az egyensúlyi állapotnál csak kisebb közegellenállásokat lehetett beállítani. A nagy kocka esetében az áramlás típusa is váltott, mert kisebb sebességeknél még volt lamináris alapréteg a szemcse körül (II. Newton turbulens tartomány), de az a nagyobb sebességeknél felbomlott, és tisztán turbulenssé vált az áramlás (I. Teljes turbulens tartomány).

KONKLÚZIÓ

A kommunális hulladékok felhasználására szolgáló áramkészülékeket leggyakrabban a kb. 60 – 200 mm szemcsetartományon alkalmazzák. Az általunk megépített kísérleti légcsatorna mérőcsövének belső átmérője 295 mm, amiből az következik, hogy kb. 100 mm-nél kisebb szemcsék vizsgálhatók benne. A méréseim kimutatták, hogy az áramkészülékek fontos szemcseméret tartományán az I. Teljes turbulens és a II. Newton turbulens szemcse körüláramlási tartománnyal kell számolni. Ez a berendezések tervezését tovább nehezíti.

A kiértékelt eredményekből levonhatjuk azt a következtetést, hogy a kis-és közepes kockánál közel azonos értékre áll be a közegellenállás tényező, nincs kitüntetett különbség az egyes orientációkban. A nagykocka esetében viszont jól látszik a 17. ábrán, hogy az egyes orientációk különböző közegellenállás tényezőket mutatnak. A nagy kocka lapban előre orientációja esetén mértem 0,51 alaktényezőt, ami jól egyezik az 1. táblázatban bemutatott Tarján féle értékekkel. Azonban más méretnél és orientációban ettől nagyobb értékeket kaptam.

A mért eredményeket még nem tudtuk általánosítani, mert ahhoz még további vizsgálatokat kell végezni, továbbá még elméleti megfontolások szükségesek ahhoz, hogy ezzel a berendezéssel, hogyan lehet az egyensúlyi állapotot, - amikor a mérlegkar tartó ereje éppen megegyezik a közegellenálló erővel - meghatározni.

KÖSZÖNETNYILVÁNÍTÁS

A tanulmány/kutatómunka a "Fenntartható Nyersanyag-gazdálkodási Tematikus Hálózat – RING 2017" című, EFOP-3.6.2-16-2017-00010 jelű projekt részeként a Szechenyi2020 program keretében az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg.

IRODALOMJEGYZÉK

- Faitli, J.: Szemcsemozgás mérése és számítása nem-newtoni egy- és többfázisú közegekben. BÁNYÁSZATI ÉS KOHÁSZATI LAPOK-BÁNYÁSZAT 2015/3. pp. 2-9. (2015)
- 2. **Faitli, J.**: Continuity theory and settling model for spheres falling in non-Newtonian oneand two-phase media. INTERNATIONAL JOURNAL OF MINERAL PROCESSING 169:(1) pp. 16-26. (2017a)
- Faitli, J.: Kontinuitási elmélet diszperz anyagrendszerek különféle berendezésekben való eltérő viselkedésének a jellemzésére. MŰSZAKI FÖLDTUDOMÁNYI KÖZLEMÉNYEK 86:(1) pp. 11-22. (2017b)
- Faitli, J.; Romenda, R.; Szűcs, M.: Egyedi TSZH szemcsék mozgásának vizsgálata modell légáramkészülékben In: Szigyártó, IL; Szikszai, A (szerk.) XIII. Kárpát-medencei Környezettudományi Konferencia Kolozsvár, Románia: Ábel Kiadó, pp. 228-237. (2017)
- 5. Pokorádi, L.: Áramlástan. Elektronikus jegyzet, Debrecen, pp. 45-48. (2002)
- 6. **Romenda, R.; Burinda, Zs.**: Behaviour of regular-shape single particles while falling in normal air conditions GEOSCIENCES AND ENGINEERING: A PUBLICATION OF THE UNIVERSITY OF MISKOLC Volume 7 : Number 10 pp. 158-168. , 11 p. (2019)
- 7. Tarján, I.: A mechanikai eljárástechnika alapjai. Miskolci Egyetemi Kiadó. (1997)